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Abstract
With the advancements made in the field of image process-

ing and computer vision, the last few decades have seen an in-
crease in studies focused on image quality assessment. While this
has resulted in the introduction of different new metrics which
some show high correlation with the perceptual judgement of the
human observers there still exists a huge room for improvement.
In this short paper which is prepared as a complement to the
workshop on Future Directions in Image Quality at CIC 27 in
Paris, France we aim to introduce future directions in the field
and challenges facing ahead.

Introduction
Image quality has been an active field of research for

decades [1]. Traditionally, subjective quality assessment has
been the preferred method for estimating quality. However,
this is resource demanding and expensive which has resulted
in objective quality assessment methods becoming the preferred
method of choice. Objective methods, commonly referred to as
quality metrics, have the goal of predicting the quality of images
without asking human observers. These metrics are classified
based on their use of the reference image; Full Reference metrics
(FR) use the reference and the test images, Reduced Reference
(RR) metrics use the test and partial information about the refer-
ence images, and No Reference (NR) metrics are only based on
the use of the test images [2]. The number of image quality met-
rics proposed in the literature is very high [3], and a number of
studies have been carried out to evaluate the performance of such
metrics against subjective data [4, 5, 6, 7, 3, 8]. In recent years
a number of datasets which provide standard subjective scores
for the evaluation of image quality metrics have been introduced
[9, 10, 11, 12].

Despite the extensive research on image quality assessment,
there is still many unsolved challenges. In this paper we will ad-
dress open challenges and future direction of research on image
quality assessment. These challenges will be addressed in the
following order:

• Image enhancement and issues on quality assessment
• Recent trends in machine learning for image quality
• Image quality in biometrics
• Quality assessment of XR applications
• Color image quality assessment in smartphones
• Future of subjective evaluation and crowdsourcing
• Challenges in medical image quality
• The future of video quality metrics

Image enhancement and issues on quality
assessment

The rapid advancements in the imaging industry has re-
sulted in the introduction of different imaging systems. Image
enhancement is a crucial part of any current and new imaging
systems where the goal is to increase the quality of the image

through different image processing techniques. Over the years
different techniques for image enhancement, including contrast
enhancement [13], denoising [14], sharpening [15], color en-
hancement [16, 17], and so on have been proposed. Techniques
for enhancement can be general or for specific applications, such
as medical imaging [18, 19, 20], biometrics [21, 22], printing
[23], displays [24], image acquisition [25], video conferencing
[26], video [27] and, etc.

A challenge in image enhancement is to evaluate the per-
formance of the enhancement techniques. The number of tech-
niques proposed are huge, making the selection of the methods
one uses in the evaluation difficult. To evaluate the performance
of image enhancement techniques a limited number of different
options are available.

1. Compare such techniques against standard techniques.
2. Subjective evaluation.
3. Objective evaluation using image quality metrics. This ap-

proach is mainly used for this task which different chal-
lenges.

Since most standard techniques are outdated, such standards are
not necessarily the go to methods for image enhancement. Using
subjective evaluations are time and resource demanding, which
results in some cases to include few images and few observers,
making it difficult to draw strong conclusions. Keeping in mind
the drawbacks of the first two approaches, in recent years im-
age quality metrics have been used to evaluate different image
enhancement techniques.

Keeping in mind that most image quality metrics are de-
signed on the assumption that the reference image has always a
better quality than the test image, there is still a challenge when
it comes to having image quality metrics performing well for im-
age enhancement [28, 29]. Simply said, when it comes to image
enhancement and its relationship with image quality assessment,

• there is a need for new image quality metrics specifically
designed for image enhancement techniques.

• there is a need for new datasets containing enhanced images
in order to evaluate the performance of image quality met-
rics. Keeping in mind this need, in recent years a number
of datasets have tried to answer this issue [30, 31, 32].

Future of subjective evaluation and crowd-
sourcing

Collecting subjective quality scores in controlled settings in
a lab is time and resource demanding. Such limits results in
datasets that are usually small in size and so have limited vari-
ability in image content, lack a divers set of distortions, are lim-
ited to few observers, and naturally have an insufficient number
of subjective scores. Due to such issues collecting online crowd-
sourced datasets have always been an attractive option. In re-
cent years datasets such as the LIVE In the Wild Image Quality
Challenge Database [33], KonIQ-10k [34], and KADID-10k [35]
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datasets which compared to previous subjective datasets are large
in numbers have been introduced. It is important to point out that
through such large datasets it is now possible to train different
machine learning techniques for image quality assessment.

Keeping in mind the progress made in the field, in the future,
different issues such as the following need to be answered:

• reliability of the crowd and how to deal with unwanted be-
havior of the observers.

• how to cover a wide range of content and ensure the di-
versity of the dataset, while at the same time keeping its
uniform.

• taking into account different viewing conditions, display
devices, etc. between observers.

• introduction of recommendations and standards for crowd-
sourcing in the field of image quality assessment which
could lead to the development of online platforms that are
specifically aimed for such tasks.

Recent trends in machine learning for image
quality assessment

With the introduction of Convolutional Neural Networks
(CNNs) and various machine learning techniques different com-
puter vision and image processing tasks have shown a dramati-
cally better performance. While few works in the field of image
enhancement [36] and assessment [37, 8] have taken advantage
of CNNs, most image and video quality metrics are still focused
on using a limited number of handcrafted features [38, 39]. Due
to the lack of any large subjective dataset in the field, most image
quality metrics based on machine learning are mostly focused on
the use of transfer-learning. With the increase in crowdsourcing
for image quality [40, 33], it is very likely that in the near future
image quality metrics will be trained from scratch which based
on the use of CNNs in other fields it is plausible that it would
result in better performing image quality metrics. While the use
of such machine learning techniques in the field are unavoidable,
careful attention should be paid to better understand how such
networks work and find links to the human visual system.

Challenges in medical image quality
With the increase in the use of different medical imaging

devices, evaluating the quality of medical images has shown to
be a critical issues. For example, evaluating the quality of im-
ages from different locations in the brain and cardiac MRI im-
ages [41] or to compare different CT reconstruction techniques
[42]. In such specific medical applications, the quality assess-
ment needs to be tuned specifically for each application, which
requires a number of methods to be developed. However, some
studies have tried to evaluate the performance of traditional im-
age quality metrics on medical images. For example, in a study,
the BRISQUE image quality metric [43] was used to evaluate and
optimize the quality of capsule video endoscopy [44]. It is impor-
tant to point out that compared to other image quality evaluation
tasks, when it comes to evaluating the quality of medical images,
due to the lack of a reference image we only focus on NR metrics
[45] which makes such quality assessments more challenging.

Keeping in mind the progress made in evaluating the quality
of medical images we could mention the following issues as the
future challenges faced in the field:

• a real time image quality assessment for medical images
is needed in order to optimize image acquisition and post-
processing.

• due to the difference in nature and content of various medi-
cal imaging modalities introducing a universal image qual-
ity metric would be a huge step in the field.

Color image quality assessment in smart-
phones

With the huge advancements made in designing mobile
phones and the high quality photographs they can now capture
the sales of traditional photographic cameras have seen a decline.
Add how social media and online social networks have taken
over our daily life and you could see a shift from highly aesthetic
images to images that are visually pleasing. Such images are
mostly produced using different image processing techniques. In
fact, a study by Araújo et al. indicated that a majority of images
shared on Instagram have been gone through some kind of post
processing [46]. It is clear that introducing an objective image
quality metric to assess these very subjective aspects are diffi-
cult. Add the fact that such images are normally displayed on
smartphone devices and not traditional large displays or printed
media and you can see how these factors could affect the overall
subjective judgment of the image quality and how challenging it
would be to propose an objective metric for such cases.

Image quality in biometrics
Biometric systems which are used widely in our daily life

are influenced by the quality of acquired images [47, 48]. Dif-
ferent studies have pointed out that low quality images are one
of the main reasons for why such systems fail [49]. To prevent
such issues different standards have been proposed [50] and vari-
ous image quality issues in biometrics different studies have been
produced.

Liu et al. [47] evaluated the performance of general purpose
image quality metrics for face biometrics. The work found that
such metrics could be suitable to measure quality in contactless-
face biometrics. In a similar study Liu et al. [51] showed that the
same image quality metrics are not able to predict system perfor-
mance in an iris biometric system. This is most likely because iris
images are different in nature to natural images which the met-
rics were initially designed for. With the introduction of multi-
modal biometric systems which commonly include both iris, face
and/or fingerprints for example in smartphones and tablets, there
has also been a push to find multi-modality assessment methods
for biometrics [52]. However, due to the different characteris-
tics of these images, this is a challenging task. In addition, since
biometric matching is performed in real-time, any image quality
metric used in biometric tasks should also perform in real-time,
or close to real-time. While Jenadeleh et al. [53] introduced a
real-time image quality metric for iris images, there is still room
for improvement.

Quality assessment of XR applications
Studies have shown that the observers focus plays an im-

portant role in evaluating the quality of 2D and 3D images [54].
Compared to 2D images, the content of the image has a higher
impact in evaluating the quality of 3D images [55]. Naturally,
the image content will play an influential role when it comes to
evaluating the quality of XR applications and so traditional im-
age quality metrics designed for 2D images will not perform well
for such a task.

An important challenge in this field of studies is the lack
of reliable subjective assessment methodologies for 3D content
[55], which in turn influences the evaluation of quality metrics.
Add the complexities in XR applications which do not exist in
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2D content and image quality assessment of XR applications are
one of the most challenging task in the field of image processing.

The future of video quality metrics
Video systems are more complex than still image systems,

and the video systems have different components including cap-
ture and display hardware, multiplexers, converters, codecs,
routers, streamers, and switches which can potentially have an
affect on the video quality [56]. To evaluate the quality of videos,
traditionally MSE and PSNR have been used which are only
loosely correlated with perceived video quality [56].

Different studies have pointed out that when it comes to
evaluating the quality of videos different issues such as attention
[57] and content [58] play an important role. While in recent
years different subjective datasets have been introduced [59, 60],
there still exist a huge room for improvement.

Conclusion
In this short paper which is prepared as a complement to

the workshop on Future Directions in Image Quality at CIC 27
in Paris, France we provided a short overview of different chal-
lenges facing the field of image quality assessment. We specif-
ically focused on eight different applications in the field. While
traditional image quality metrics could be used in all the men-
tioned application, we have pointed out that in order to reach
better results and improve the performance of the metrics each
application should be treated separately. Simply said, in each
case the specific conditions and characteristics of the images used
in the application should be taken into account.
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